e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Decision Trees in Ecological Modelling

en
Abstract

Decision tree learning is among the most popular machine learning techniques used for ecological modelling. Decision trees can be used to predict the value of one or several target (dependent) variables. They are hierarchical structures, where each internal node contains a test on an attribute, each branch corresponding to an outcome of the test, and each leaf node giving a prediction for the value of the class variable. Depending on whether we are dealing with a classification (discrete target) or a regression problem (continuous target), the decision tree is called a classification or a regression tree, respectively. The common way to induce decision trees is the so-called Top-Down Induction of Decision Tress (TDIDT). In this chapter, we introduce different types of decision trees, present basic algorithms to learn them, and give an overview of their applications in ecological modelling. The applications include modelling population dynamics and habitat suitability for different organisms (e.g. soil fauna, red deer, brown bears, bark beetles) in different ecosystems (e.g. aquatic, arable and forest ecosystems) exposed to different environmental pressures (e.g. agriculture, forestry, pollution, global warming).

en
Year
2011
en
Country
  • SI
Organization
    Data keywords
    • machine learning
    en
    Agriculture keywords
    • agriculture
    en
    Data topic
    • modeling
    en
    SO
    MODELLING COMPLEX ECOLOGICAL DYNAMICS: AN INTRODUCTION INTO ECOLOGICAL MODELLING FOR STUDENTS, TEACHERS & SCIENTISTS
    Document type

    Inappropriate format for Document type, expected simple value but got array, please use list format

    Institutions 10 co-publis
      uid:/409NNZL9
      Powered by Lodex 8.20.3
      logo commission europeenne
      e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
      Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.