e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Transcriptome Profiling of the Theca Interna from Bovine Ovarian Follicles during Atresia

en
Abstract

The theca interna is a specialized stromal layer that envelops each growing ovarian follicle. It contains capillaries, fibroblasts, immune cells and the steroidogenic cells that synthesize androgens for conversion to estradiol by the neighboring granulosa cells. During reproductive life only a small number of follicles will grow to a sufficient size to ovulate, whereas the majority of follicles will undergo regression/atresia and phagocytosis by macrophages. To identify genes which are differentially regulated in the theca interna during follicular atresia, we undertook transcriptome profiling of the theca interna from healthy (n = 10) and antral atretic (n = 5) bovine follicles at early antral stages (<5 mm). Principal Component Analyses and hierarchical classification of the signal intensity plots for the arrays showed primary clustering into two groups, healthy and atretic. A total of 543 probe sets were differentially expressed between the atretic and healthy theca interna. Further analyses of these genes by Ingenuity Pathway Analysis and Gene Ontology Enrichment Analysis Toolkit software found most of the genes being expressed were related to cytokines, hormones and receptors as well as the cell cycle and DNA replication. Cell cycle genes which encode components of the replicating chromosome complex and mitotic spindle were down-regulated in atretic theca interna, whereas stress response and inflammation-related genes such as TP53, IKBKB and TGFB1 were up-regulated. In addition to cell cycle regulators, upstream regulators that were predicted to be inhibited included Retinoblastoma 1, E2 transcription factor 1, and hepatocyte growth factor. Our study suggests that during antral atresia of small follicles in the theca interna, arrest of cell cycle and DNA replication occurs rather than up-regulation of apoptosis-associated genes as occurs in granulosa cells.

en
Year
2014
en
Country
  • AU
Organization
  • Univ_Adelaide (AU)
Data keywords
  • ontology
en
Agriculture keywords
    en
    Data topic
    • information systems
    • modeling
    • semantics
    en
    SO
    PLOS ONE
    Document type

    Inappropriate format for Document type, expected simple value but got array, please use list format

    Institutions 10 co-publis
      uid:/2THQLR60
      Powered by Lodex 8.20.3
      logo commission europeenne
      e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
      Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.